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THE EVALUATION OF TWO METHODS OF SURVEYING STAR BACKGROUNDS 

FOR SPACE MISSION SIMULATORS 

By Burnett L. Gadeberg 
Ames Research Center 

Two methods have been developed for surveying the star backgrounds of 
space mission simulators. The first method requires no prealinement or meas- 
urement of the simulator of any kind. Sights of a reference cross are used to 
establish the orientation of the basic coordinate system and the relative 
dimensions of all pertinent components of the simulator. When these relative 
dimensions of the simulator are combined with sights of the simulated stars, 
their relative positions are determined. If the reference cross is con- 
structed with arm dimensions known in terms of a standard arm length, then all 
dimensions deterfined by the survey are given in terms of the standard arm 
length. The second method, which makes use of fewer observations, requires 
that the survey instrument be prealined with the simulator coordinate system 
about which the cab angle instrumentation is oriented. In this system all 
dimensions are given in terms of the distance between the simulator center of 
rotation and the survey instrument. Both systems produce similar results, 
whose standard deviations are slightly larger than those of the observations 
when a minimum of data is used. Both systems may also be used for resurveying 
without interruption during an extended simulator run. 

INTRODJCTION 

The value of a space mission simulator depends upon its physical realism 
and its ability to generate problem situations accurately. One of the pur- 
poses of such a simulator is to provide a realistic environment in which 
methods of navigation and guidance may be evaluated and crews may be trained 
in navigation techniques. The Midcourse Navigation and Guidance Simulator 
constructed at the Ames Research Center is provided with a movable spacecraft 
type cab from which simulated stars and moon may be obs.erved. The "moon" is 
programmed to move among the stars according to the mission profile. Although 
the navigation and the guidance computations may be programmed on a digital 
computer and sight angles for a given simulated trajectory may be computed 
outside the simulator, the errors introduced by a pilot's sighting may be best 
generated by taking the difference between a pilot-observed angle and an angle 
accurately computed from the coordinates of the two simulated celestial bodies 
sighted. The comuted angle is a function of the cab position, because of the 
parallactic effect of the displacement of the sighting instrument from the 
center of the air bearing. It is therefore necessary to compute the angle 
which existed for each position of the cab when a measurement was made. 



In order to minimize the bias errors in this pilot-generated noise, one 
must know the coordinates of the objects sighted with sufficient accuracy that 
the error of the computed angle is small compared to that of the pilot- 
generated noise. One may assume that if the expected error of a pilot's sex- 
tant sight is of the order of 10 seconds of arc, then the errors of the 
computed angle should be of the order of 1 or  2 seconds of arc. For a simula- 
tor of the type constructed at the Ames Research Center, where the pilot is 
located approximately 40 feet from the simulated stars, the coordinates of the 
stars must be known, relative to each other, within approximately 0.004 inch 
in two coordinates normal to the line of sight. Obviously stadiametric meas- 
urements over a distance of 40 feet should be avoided if possible. 
sional surveyors employ methods which include precise linear measurements and 
are designed to give results in dimensional numbers. The problem here was to 
determine an angle from data of an angular survey. It was consequently 
decided to develop an independent survey method appropriate to the problem 
which did not include a stadiametric measurement. 

Profes- 

Two methods have been devised by which these star coordinates may be 
surveyed to the requisite accuracy. One method uses a precise reference cross 
mounted near the plane of the simulated stars and an accurate theodolite 
mounted in the cab in a fixed position convenient for the surveyor to operate. 
The advantage of this system is that the simulator may be assembled without 
alinement or measurement and all necessary quantities may be derived from the 
calibration observations made with the theodolite. The second method makes 
the survey as simple as possible by alining the instrument coordinate system 
with the simulator coordinate system. The magnitude of the instrument vector 
relative to the air bearing need not be measured, however, since thls quantity 
is used to make the entire analysis dimensionless. 

These survey methods are discussed and some of their advantages and 
disadvantages are indicated through comparisons with computations of known 
examples . 

NO TAT I O N  

?!:e notation used in this report represents three classes of numbers: 
. , -  n O  o.l.n'.:; , vectors , and matrices. Vectors are distinguished with a super-bar 
a. 'A ;:.atrices are enclosed in brackets. 

A. azimuth angle 

qoordinates of center of air bearing 
1 

c l  
[AI'] transformation matrix from instrument coordinate system to simulator 

coordinate system using cab position angles 



a .  
b 

a 

h 

k 

K 

:.i n 

R 

r 
- 
r 

r' 
jj: 

S 

- 
U 

coordinates of centers of circles 

vector between two instrument positions 

altitude angle 

unit vectors of simulator coordinate system established by rotating 
T,j,E system 180' about E 

unit vectors of coordinate sytem established by graduated circles of 
sighting instrument 

unit vectors of coordinate system established by reference cross 

dummy constant 

direction cosines 

transformation matrix Crom instrument coordinate system to simulator 
system using reference cross sights 

dummy variable 

magnitude of vector 

vector of instrument from air-bearing center 

radius of circle 

crossarm length 

unit vector from instrument to reference cross 

coordinate s 
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z 
a 

P 

Y 

6 

E 

dummy variable 

radius of circle 

radius of circle 

angle subtended by reference crossarm as seen from instrument 

angle between a and line of sight to a "star" 

parallactic angle of a "star" 

- -  

cab position angles representing roll, pitch, and yaw (see fig. 8) 

" m s  OF FIRST METHOD 

The Simulator 

The Arnes Midcourse Simulator cab (fig. 1) is mounted on an air bearing 
with center of rotation at C. Internally a sighting instrument is located at 
Inst., with vector r locating it relative to the air-bearing center. 
Approximately 40 feet from the cab is a vertical display containing the illu- 
minated stars, the moon, and a survey cross. 

For the first survey method, the position of the survey instrument and 
the position of the center of the air bearing are determined before the coor- 
dinates of the stars are computed. These positions are determined from obser- 
vations made on a reference cross mounted in the plane of the starboard. It 
will subsequently be shown that if sights are taken of five scribe marks on 
the cross, the position of the instrument may be determined relative to the 
cross. Then if observations are made with the instrument in four different 
positions (by rotating the cab on the air bearing), the location of the center 
of the air bearing relative to the cross may be determine,d, and, in addition, 
the vector to the instrument from the center of the air bearing may be found. 
Observing the stars from two of these instrument positions permits the deter- 
mination of three coordinates of each star relative to the center of the air 
bearing. A l l  linear quantities may be made dimensionless by dividing by the 
length of one of the crossarms; consequently, no stadiametric measurements 
need be made since the final output from the system will be the computation of 
the angle between two of the stars as seen from some particular location of the 
sighting instrument. 

The survey cross is composed of two straight arms, intersecting orthogo- 
nally near their centers and scribed with five cross marks located at the 
ends of each arm and at their common center. Practical reasons may dictate 
equidistant crossarms, but this has no bearing on the problem considered here. 
The vertical and horizontal arms of the cross generate a natural coordinate 

4 



system. axis along 
the vertical arm with positive direction upward, j axis horizontal and posi- 
tive to the left (when facing the cab), and axis - - -  normal and in the direc- 
tion of the cab. 
with origin at C and is generated by rotating the (?,:,E) system through 
180° about the E axis. 

This system has its origin at the center of the cross, I? - 
F 

The basic, fixed simulator system ( I , J , K ) ,  however, is taken 

Analysis of Instrument Position 

The geometry involved in the determination of one of the instrument 
positions by surveying the cross is shown in figure 2. The instrument is 
located at Inst. and the five scribe marks on the cross are at points 0, 1, 
2, 3, and 4. Unit vectors from the instrument position to the sighting marks 
on the cross are indicated by Go, El, G2, G3, and E,. If the sighting 
instrument provides an azimuth angle, A, and an altitude angle, h (see fig. 3), 
then unit vectors are given by 

Go = cos cos b y '  - cos ho sin A&?' + sin hoK' 

El = cos hl cos AII' - cos hl sin AIJ' + sin hlK' 

E2 = cos h2 cos A21' - cos h2 sin A2y' + si'n h2K' 

U3 = cos h3 cos A3y' - cos h3 sin A33' + sin h3K' 

- 

- 

- 
E, = cos h, cos A,I' - cos h, sin A4T1 + sin h,K' 

- - -  
where the right-hand triad I', J', K' is the coordinate system of the 
instrument. Then the angles observed between the points of the cross are 
defined by 

cos y1 = ii1 . iio 

cos y2 = ii2 uo 

cos y3 = E3 Eo 

cos y4 = E, * Eo 

The analysis may now be separated into horizontal and vertical independ- 
ent groups. The horizontal group is involved with points 0, 1, and 2 of the 
cross and the vertical group with points 0, 3, and 4. The horizontal analysis 
will provide the y component of the instrument position (see fig. 4) and an 
Xhoriz component which is normal to the horizontal arm of the cross, but 
which does not necessarily lie in the xy plane. The vertical analysis pro- 
vides the z component and an Xvert component normal to the vertical arm 
which does not necessarily lie in the xz plane. The final x component can 
then be computed from either Xhoriz and z or xvert and y or it may be 
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advantageous to average the two values. The latter method was found to give 
the best results for the simulator considered in this study; thus 

Since the horizontal and vertical analyses are identical, only the 
horizontal will be considered. In figure 5 points 0, 1, and 2 represent the 
sighting points on the horizontal arm of the cross and Inst. is the instru- 
ment location whose position is required. The lengths of the crossarms SI 
and s2 and the sight angles y1 and y, are known. If the angle y, is 

known an elementary proposition of plane geometry states that the unknown 
position lies on a circle through the points 0 and 1, whose center is so 
located that the central angle between the points 0 and 1 is 27,. Thus two 
intersecting circles through points 0 and 1 and through points 0 and 2 would 
give an unambiguous solution, since one of the points of intersection is at 
the origin (the center of the survey cross which is known to be at a different 
position than the instrument). 
ital computer program, a third circle is used which passes through points 1 
and 2 and the unknown position, Inst. The equations of three circles are then 

However, to facilitate the solution by a dig- 

and are solved in the following manner. Each is expanded, and it may be seen 
from figure 5 that 

a2 + b2 = a2 

c2 + d2 = p2 
e2 + f2 f rI2 

Then 

x2 + f - 2ax - 2by = 0 

x2 + y' - ~ C X  - 2dy = 0 

x2 + - 2ex - 2fy = r r 2  - (e2 + f2) 

Now let 

-2z = x2 + f 
-2K = r f 2  - (e2 + f2) 

6 



Thus 

ax + by + Z = 0 

cx + dy + Z = 0 

ex + f y  + Z = K 

and t h e  s o l u t i o n  i s  

The elements of t h e  mat r ix  and t h e  vec tor  are computed from t he  fol low- 
i n g  simple equat ions,  which may be deduced from t h e  geometry of f i g u r e  5 and 
t h e  d e f i n i t i o n  of K. They are 

a = -b/tgyl 

b = -s1/2 

f = d +  b 

The q u a n t i t y  Z i s ,  of course,  redundant and i s  not  independent of x 
and y .  However, t he  proof of t h e  s o l u t i o n  may be r e a d i l y  obta ined  i f  t he  
expressions f o r  t h e  elements of  t h e  mat r ix  a r e  expanded and s u b s t i t u t e d .  The 
x and y determined i n  t h i s  s o l u t i o n  a r e ,  i n  r e a l i t y ,  e i t h e r  Xhoriz and y o r  

xvert and z ,  depending upon whether we a r e  ana lyz ing  t h e  ho r i zon ta l  o r  v e r t i -  

c a l  s i g h t s .  Af t e r  Xhoriz and xvert have been computed, x i s  computed from ! 

1 
- y y 2  + (.2 ho r i z  

Analysis  of Air-Bearing Center P o s i t i o n  

Now assume t h a t  t h e  ins t rument  has  been l o c a t e d  wi th  r e spec t  t o  the  
r e fe rence  c ros s  f o r  f o u r  d i f f e r e n t  p o s i t i o n s  of t h e  s imula tor  cab. These four  
p o i n t s  l i e  on t h e  su r face  of a sphere,  and i f  they  are jud ic ious ly  chosen, a r e  

7 



sufficient to define this sphere and thus locate the center of the air bearing 
with respect to the center of the cross. The equation of the sphere, relative 
to the reference cross coordinate system, is given by 

(x - A ) 2  + (y - B ) 2  + (z - C)2 = r2 

where A, B, C, and r represent the unknown position of the center and the 
radius of the sphere, and x, y, z, the known position of the instrument pre- 
viously determined. Four unknowns are present; hence four equations (from 
four instrument positions) are required for solution. 

If the equations are expanded, they may be put in a symmetrical linear 
form by the substitutions 

2 K  = r2 - (A2 -1- B2 + C2) 

2 R  = (x' + 5 + z 2 )  

and for four positions of the instrument, these are 

x l A  + YlB + z ~ C  + K = R1 
x ~ A  + y 2 B  + z ~ C  + K = R 2  

X& + y3B + 2 3 C  + K = R3 
x4A + y,B + z4C + K = R4 

Then the solution is 

The radius of the sphere generated by the instrument 
from 

r = [ 2 K + A 2 + B 2 + C  2 ] 112 

position is then found 

If greater accuracy is required, observations may be taken from more than 
four instrument positions. In this case a least-squares reduction may be 
employed and the observation equations become 

8 
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These n equations are then reduced to four normalized equations. The 
first normalized equation is obtained by multiplying each equation above by 
its own coefficient of A and summing the resulting equations. A similar 
process using the coefficients of B, C, and K produces the three remaining 
normalized equations. The matrix solution is then given by 

where C represents the sumation from1 to n of similar terms and n is 
the number of instrument positions from which observations were made. 

The accuracy of this solution will depend, to a certain extent, upon the 
choice of the instrument locations. The mathematical system makes use of the 
deviation of the spherical surface from a plane in order to calculate the 
radius of curvature and the position of the center. Three of the four points 
required establish the plane and the fourth gives a measure of the deviation 
from this plane. 
the deviation from that plane are established with the greatest possible accu- 
racy. Hence, when four points are used, three of them should lie at the 
vertices of an equilateral triangle, with maximum possible distance between 
them, and the fourth should be located at the center of the triangle (when 
projected on the plane). 
configuration is somewhat more obscure. The five positions chosen for the 
test data used to check the method were predicated on a "maximum neighborhood 
area" distribution over the portion of the sphere accessible to the observa- 
tion instrument. Thus, four positions were used to describe a square and the 
fifth was located in the center of the square (when seen projected). 

The greatest accuracy will be attained when the plane and 

When five or more points are used, the best possible 

Analysis of Star Position 

The vector positions of the sighting instrument and the center of the air 
bearing with respect to the reference cross coordinate system have been deter- 
mined. Consequently, the vector positions of the instrument and the stars 
may now be determined relative to the simulator coordinate system with the 
center of the air bearing as origin. 

Up to the present we have not concerned ourselves with the orientation of 
the sighting instrument and its coordinate system. 
because we worked exclusively with the scalar products of the unit vectors 
observed with the instrument. Now, however, we are interested in determining 
the vectors of the stars from the air-bearing center expressed in the simula- 
tor system. Thus, the transformation from the instrument coordinate system 
( y l , y l , E 1 )  to the simulator system ( I , J , K )  must be determined. 

It was not necessary 

- - -  
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Consider three unit vectors from a given instrument location to the three 
points located on the cross at 0, 1, and 3. As was done in a previous 
section, these may be written 

c0 = z0Tf + q,T' + noK1 

iil = 111' + mlJI + nlK1 

fi3 = z3T1 + + n3E1 

- 

where 

lo = cos ho cos A, = -cos ho sin no = sin ho 

2 1  = cos hl cos Al ml = -cos hl sin Al nl = sin hl 

2 ,  = cos h, cos A, n, = sin 11, m3 = -cos h, sin A, 

where h and A are the observed altitude and azimuth angles. 

These same unit vectors in the simulator coordinate system may be written 
in terms of the instrument position x,y,z and the lengths of the crossarms 
s1 and s3  as (see fig. 2) 

= (x/ro)I + (y/rO)F - (z/ro)K 

EL = (x/rl)I + [(sl + y)/rl17 - (z/rl)K 

E, = (x / r3 ) I  + (y/r3)Tjl - [ ( s g  + z)/r3]TI 

where 

2 1/2 ro = [x2 + y' + z 1 
rl = [x2  + ( s L  + Y ) ~  + z21 11 2 

r3 = [x2  + f + ( s 3  + z l 2 1  11 2 

It should be kept in mind that the coordinates of the center of the reference 
cross in the simulator coordinate system are the same as the coordinates of 
the instrument in the cross coordinate system with the sign of the z 
component reversed. 

By equating the vectors written in the two systems we may solve for the 
transformation matrix 

X - 
r0 I' r3 
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Now any unit vector observed in the instrument system may be written in 
the simulator system as 

In order to complete the analysis we must be able to compute the 
magnitude of these new star vectors. 
seen that the vector of a star from the center of the air bearing may be 
written as 

Refer now to figure 6 where it may be 

are I n ~ t . ~  
are two unit vectors 

In the figure, C 
vectors to two instrument positions 1 and 2, iisl and fis2 

of a star observed from the two instrument positions, and 

tude associated with the unit vector GSl. The vectors FInstSl and 'Inst.2 
were found previously and are the transformed observed vectors 

of the star and thus are known. The magnitude of the vector rsl may be 
found from the geometry of figure 6 in the following manner 

is the center of the air bearing, r Inst.l and F 

rsl is the magni- 

Gsl and ES2 

- -  - -  
sin 6 sin E 

but 
Ius2 x G I  

sin 6 = a 

and 

Hence 

where 
- 

g = F  - r  Inst.2 Inst.l 

Thus, the vectors to all of the stars from the center of the air bearing 
may be found and the analysis of the survey is complete. 
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TESTS 

Test Data 

A Fortran program was written which would accept the observed data and, 
using the equations formulated above (including the least-squares reduction 
for determining the center position of the air bearing), compute and give the 
coordinates of the instrument positions relative to both the reference cross 
and the simulator coordinate systems, and determine the positions of the ten- 
ter of the reference cross and the simulated stars relative to the simulator 
coordinate system. The angle between two stars was computed directly from the 
observed data and compared with the angle computed from the final coordinates 
of the stars determined by the survey. This was considered to be the ultimate 
check. Since the final purpose of the survey was to determine the coordinates 
of the individual stars, the angle between any two stars computed with these 
coordinates was checked to see whether it was correct within a specified 
accuracy. 

In order to check the mathematical formulation and the computer program, 
a set of test data was hand computed to within 0.01 second of arc for a hypo- 
thetical situation for which all the coordinates and dimensions were previ- 
ously established. These test conditions are shown in figure 7. The center 
of the cross has coordinates (x = 40, y = 0, and z = 4) from the center of the 
air bearing and has four equal arm lengths of dimension 8. Two stars, S2 and 
S1, were located at positions (x = 40, y = 4, z = 8) and (x = 40, y = -10, 
z = 12). The sighting instrument was considered to be located on the surface 
of a sphere of radius 4. 
roll right loo (about the 
all of these being relative to the fifth position which was located on the 
E axis. 

Five - instrument positions were used, roll left and 
I axis), pitch up and down 10' (about the 3 axis); 

The altitudes and azimuths of the unit vectors to the five points of the 
cross and the two stars were then computed for each of the five instrument 
positions. 
checking the accuracy of the results. 

These are listed in table I and are the "observed data" used in 

Accuracy of Results 

The precomputed "observed data" were run with the survey program (on an 
IBM 7094 computer carrying eight significant figures) which computed the 
groups of coordinates and scalars discussed in the previous section. These 
were compared with the original quantities used to precompute the input data, 
and the accuracy of the program was assessed. The assumed quantities and the 
program computed quantities are listed in table I1 so that comparisons may be 
readily made. The quantities listed are: the three components of the posi- 
tions of the instrument relative to the cross; the three components of the 
center of the cross relative to the center of the air bearing; the three com- 
ponents of the positions of the instrument relative to the center of the air 
bearing; the distance of the instrument from the center of the air bearing; 
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the three components of the stars relative to the center of the air bearing; 
the computed angle between the stars; and the error in this computed angle. 

From table I1 it is readily seen that the computation of the instrument 
position relative to the reference cross coordinates gives the components of 
the position within 0.0003 foot or approximately 0.003 inch. The coordinates 
of the cross and the stars relative to the air-bearing center are in error by 
as much as 0.01 foot or approximately 0.1 inch. However, the error made by 
the program in computing the angle between the two stars, as seen from the 
r o l l  left position of the instrument, is only 0.73 second of arc. This is 
well within the acceptable limits originally set. 

Some information was also desired on the linearity of the propagation of 
random observation errors into the computed angle. The program was conse- 
quently modified so that random Gaussian errors of any size and zero mean 
value could be introduced into the observed altitude and azimuth angles. For 
a given standard deviation of the observation errors, 500 members of the 
ensemble were considered sufficient to produce a fair representation of 
Gaussian errors to be applied to any single observed angle. On each pass 
through the machine, a random error was applied to each of the observed angles, 
the angle between the two stars was computed, and the deviation from the 
original angle was determined. At the conclusion of a run, the mean error and 
the standard deviation of the errors were computed. 

Sets of observation errors, characterized by zero mean value and standard 
deviations of 0.1, 0.25, 1.0, 3.0, and 5.0 seconds of arc, were introduced 
into the observation angles and the resulting mean errors and standard devia- 
tions computed and tabulated in the "First Method" column of table 111. The 
resulting standard deviations are also shown plotted in figure 8 as a function 
of the standard deviation of the observation errors. The curve shows that the 
propagation of the error is linear and that the ratio is 1.5 to 1. The mean 
errors from table I11 are plotted in figure 9 (on an expanded scale), also as 
a function of the standard deviation of the observation errors. It is seen 
that these errors are essentially z e r o  for very low values of the observation 
errors, but are not zero for sensible values of the observation errors. This 
indicates that the resulting errors in the computed angle were not strictly 
Gaussian in character because of nonlinearities in the system. However, the 
nonlinearities are minor when considered in relation to the problem of esti- 
mating output errors produced by a given set of input errors. One may assume 
that the performance of the survey system may be estimated reasonably from the 
standard deviation given by the curve of figure 8 with a "mean" error taken as 
the algebraic sum of the error given in figure 9 and with the computation 
error (0.73 sec) discussed previously. Thus if the observation errors have a 
standard deviation of 1 second of arc, the expected resulting error in the 
computed angle would be 

0.73 - 0.06 = 0.67 

second of arc with a standard deviation of 1.5 seconds of arc. 



Some of this error is related to the limited angular motion of the cab, 
which in relation to the distances between the air-bearing center and the 
instrument and between the air-bearing center and therstarboard, contrives to 
produce relatively long slender triangles which aake it difficult to determine 
linear distances to the desired accuracy. Changing the geometry of the simu- 
lator could alleviate some of these difficulties. 

It is apparent, from the foregoing, that this method of analysis requires 
a considerable number of observations. For example, five reference cross 
observations from at least four instrument positions are required, which is a 
minimum of twenty observations to determine the constants of the system. Con- 
sequently, a formulation was explored which eliminated the use of the refer- 
ence cross and obtained the instrument vector relative to the center of the 
air bearing directly from cab position angle measurements. 
method is discussed in the following sections. 

This second survey 

ANALYSIS OFaSECOND METHOD 

An alternate method of making the survey was devised which obviated some 
of the difficulties of the first method but required some additional measure- 
ments. The objective of the change was the direct determination of the 
instrument vector from cab position angle measurements and hence the elimina- 
tion of the reference cross and its attendant observations. Observations of 
the stars from two instrument positions are required, as they were in the pre- 
vious method, to determine the star coordinates. However, in this method the 
analysis is made dimensionless by dividing all linear quantities by the magni- 
tude of the instrument vector relative to the air-bearing center. 

Analysis of Instrument Position 

The method used requires the alinement of the instrument coordinate 
system with the simulator coordinate system, and the determination of the 
initial vector of the instrument position when the cab position angles are all 
set to zero. As a result, it is necessary to physically locate the center of 
the air bearing. This may be done by sighting from an external point to a 
target placed near the center as the cab is rotated. By successive approxima- 
tions, the target may be moved until it coincides with the center. The cab 
may then be leveled and the azimuth angle between the instrument vector and 
the simulator coordinate system determined. 
of arc was required for the simulator constructed at the Ames Research Center.) 
Then the sighting instrument may be leveled and by sighting the center of the 
air bearing with the instrument set at the above determined azimuth, the 
instrument coordinate system may be brought into alinement with the simulator 
system. The altitude angle of the instrument vector may now be read directly. 

(An accuracy of about 6 minutes 

The instrument position vector, for any position of the cab, is then 

FI =  AT]^^ 
determined from 

14 

~ - - m - - 1 1 1 1 1 1 1 1 1 1 1 ~ I .  1.1IIII.IIIIII11111111111111111.1111 11111111 11111 I111 I I111111111 I 111 I 1111 



where [AT] is the transformation 

cos e 0 sin e 

Lsin e o cos e 

Here she-angles-9, 8 ,  and $ are the position angles of the cab relative to 
the I, J, and K axes as shown in figure 10. The vector ro is the initial 
instrument position vector when the three cab angles are set to zero. Hence, 
this vector has the form 

2, = cos h0 cos AJ - cos h0 sin AJ + sin &K 

where ho is the altitude angle and A, is the azimuth angle in simulator 
coordinates when the cab angles are set to zero. 

Analysis of Star Position 

If we assume now that we have determined the instrument position, relative 
to the air-bearing center in the simulator coordinate system, the next problem 
is to determine the coordinates of the star positions. The method used is 
almost identical to that described under the first survey method. Observa- 
tions of the stars from two instrument positions are required. These observa- 
tions (unit vectors) are transformed from the instrument coordinates system 
into the simulator coordinate system by use of the transformation matrix, [AT], 
described in the previous section. 

The vector of a star position, relative to the air-bearing center, is 
then given by 

where 

and 
- g = F  - r  Inst.2 Inst., 

as developed in the previous section entitled "Analysis of Star Position," in 
conjunction with figure 6. 



TESTS 

Test Data 

Determining the coordinates of the stars by the second survey method 
requires observations from only two positions of the cab. This was indicated 
in the previous section where the equations for the star survey were developed. 
It is rather obvious that maximum accuracy will be attained when the two 
instrument positions have a maximum separation from each other along a line 
normal to the direction to the simulated star. As a consequence, test data 
were precomputed for two cab positions only, in the roll left and roll right 
(?loo) positions. 
of the two stars were computed to within 0.01 second of arc. The rectangular 
coordinates were assumed to be 40, 8, and 4 for star number 1 and 40, -8, and 
10 for star number 2. The initial altitude and azimuth angles of the sighting 
instrument, relative to the air-bearing center, were taken to be 90' and Oo 
and it was assumed that the cab read out instrumentation was accurately alined 
with the cab coordinate system when these angles were set to zero. All of 
those input quantities were displayed in table IV. 

For each of these positions the altitude and azimuth angles 

Accuracy of Results 

A computer program was written to accommodate this second method of 
analysis. The coordinates of the stars were then computed, and the results 
are listed in table IV along with the input data. It will be noted that the 
computed coordinates are all one-fourth of the input values. This is because 
the equations were normalized by dividing by the length of the instrument vec- 
tor, which was assumed to have a value of 4. Thus, a comparison shows that 
all of the coordinates of the stars were determined correctly to 4 decimals 
except the x component of star 2 which is in error by 1 unit in the fourth 
decimal place. The correct angle between the two stars, the computed angle, 
and the error between them, as seen from the r o l l  left position of the cab, 
are also shown in table IV. The error of the computed angle is only 0.02 
second of arc. 

The effect of random errors was again studied by the same method 
discussed previously. Again, 500 passes through the computer were used to 
generate a Gaussian set of errors to be applied to each angle. The resulting 
mean errors and standard deviations of the errors in the computed angle are 
listed in table I11 and shown in figures 8 and 9 as a function of the standard 
deviation of the input errors. 

The results from this second method of analysis are similar to those from 
the first method. The propagation of the error is linear with the standard 
deviation of the input errors (fig. 8), and the existence of mean errors indi- 
cates the presence of some nonlinearities in the system. 

The major performance differences between the two systems are that the 
second system produces results with slightly lower standard deviations and 
slightly higher negative mean errors. Hence, if the input to the two methods 
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has a standard deviation of 1 second of arc, the second system will display 
results with a mean error of -0.13 second and a standard deviation of 1.4 sec- 
onds of arc, while the results from the first system will have corresponding 
values of 0.67 and1.5 seconds of arc. 

CONCLUDING REMARKS 

These two theoretical methods of surveying the star backgrounds of space 
mission simulators discussed in this report have been shown to operate satis- 
factorily. 
their expected accuracies are essentially the same and are somewhat less than 
the accuracy of the observed data when a minimum of data (such as that of the 
examples) is used. Using redundant data could improve the expected accuracy, 
however. The accuracies derived from the tests are also conditioned by the 
geometrical limitations of the examples used, which were taken from the Ames 
Midcourse Simulator. Limited cab angular motion, in relation to the distances 
between the air-bearing center and the instrument and between the air-bearing 
center and the starboard, results in relatively long slender triangles from 
which the determination of linear distances to the desired accuracy is diffi- 
cult. These difficulties could be alleviated by changing the geometry of the 
simulator. 

When evaluated in terms of the computed angle between two stars, 

The two methods, when compared, have both relative advantages and 
disadvantages. The first method of survey permits the simulator to be assem- 
bled without alinement or measurement, as is required by the second method. 
On the other hand, more survey observations are required in the first method 
in order to determine the constants of the system and the star coordinates. 
Nevertheless, the first system may contain some distinct advantages, such as 
the possibility of a reliable recalibration in the middle of a long-term simu- 
lator run without disturbing the progress of the run. On the other hand, 
recalibration with the second system, which might be less reliable because of 
the need to orient the sighting instrument, might be accomplished much more 
readily because of its simplicity. It is thus apparent that the two systems 
are mutually complementary and both may have a place in the proper operation 
of a space mission simulator. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif. , Feb. 8, 1965 
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TABLE I.- PRECOMPUTED TEST DATA FOR USE WITH FIRST METHOD 

Reference cross 
and star no. 

0 
1 
2 
3 
4 
S1 
s2 

0 
1 
2 
3 
4 
S1 
s2 

0 
1 
2 
3 
4 
S1 
s2 

0 
1 
2 
3 
4 
S1 
s2 

0 
1 I 

2 
3 
4 
S1 
s2 

A l t i t u d e  angle  

OQ 5'13!'32 
o 5 11.86 
o 5 6.21 

-11 13 28.42 
11 23 30.96 
11 0 59.77 
5 46 37.94 

R o l l  r i g h t  10' 

0 5 13.32 
o 5 6.21 
0 5 8.26 

-11 13 28.42 
11 23 30.96 
11 6 17.04 
5 45 27.05 

P i t c h  up 10' 

0 5 2.24 
0 5 2.24 

-11 2 21.64 
11 12 14-73 

o 5 8.01 

io 51 29.22 
5 40 16.85 

P i t c h  down 10' 

o 5 18.90 
o 5 12.50 
o 5 12.50 

-11 25 9.94 
11 35 22-37 
11 14 27.57 
5 52 6.20 

Neutral  pos i t i on  

0 0 0.0 
0 0 0.0 
0 0 0.0 

-11 18 35.76 
11 18 35.76 

5 40 56.78 
10 58 50.07 

Azimuth angle  

0'59'41'.'39 
349 38 59.45 
12 15 47.97 
0 59 41.39 
0 59 41.39 
14 58 7.52 
355 16 33-91 

359 o 18.61 
347 44 12.03 
10 21 0.54 
359 o 18.61 
359 o 18.61 
1.3 5 45.89 
353 18 22.01 

0 0 0.0 
348 52 41.73 
11 7 18.27 
0 0 0.0 
0 0 0.0 
1-3 45 55.45 
354 23 10.50 

0 0 0.0 
348 29 43.75 
11 30 16.25 
0 0 0.0 
0 0 0.0 
14 16 27.24 
354 14 48.24 

0 0 0.0 
348 41 24.24 
11 18 35.76 
0 0 0.0 
0 0 0.0 
14 2 10.48 
354 17 21.86 
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TABLI3 11.- RESULTS COMPUTED BY FIRST METHOD 

Correc t  

X Y Z 

Instrument  p o s i t i o n  r e l a t i v e  t o  t h e  r e fe rence  c ros s  

Computed 

X Y Z 

40.0000 
40.0000 
40.6946 
39.3054 
40.0000 

-0.6946 -0.0608 40.0000 -0.6948 -0.0605 
.6946 -.0608 40.0000 ,6944 -.0605 

0 - .0608 40.6946 - . 0001 - .0607 
0 -.0608 39.3054 0 -. 0606 
0 0 39.9999 -.0001 0 

I 
Center of r e fe rence  c ross  from a i r - b e a r i n g  cen te r  

40.0000 0 4 0000 39.9902 -0.0002 4.0122 

Instrument p o s i t i o n  reLat ive  t o  t h e  a i r -bea r ing  cen te r  

0 

4.0000 

Distance of instrurnent from a i r -bea r ing  cen te r  

4.0122 

Coordinates  of s tars  

40.0000 -10.0000 12.0000 39.9913 -10.0004 12.0129 
40.0000 I 4.0000 I 8.0000 1 39.9905 1 3.9999 1 8.0120 

Computed angle  between s tars  

I 
20°9 54!'12 20°9 53!139 I 

E r r o r  



Standard 
dev ia t ion  of 
i npu t  e r r o r ,  

0 7  

see  of  a r c  

0.0034 
-. 0053 
-. 0632 
- .2082 
- 3055 

I 0.1 0.1498 
3747 

1 4959 
4.4881 
7 4879 

TABLE 111.- STATISTICAL RESULTS 
. -. ~- - 

Second method 
-- =- I First method 

-0.0116 
.0085 

-. 1501 
- 4553 
.1124 

0 ,  
sec  of a r c  

. 

0.1383 
9 3453 
1.3836 
4.1496 
6.9001 
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TABm IV.- PRECOMPUTED TEST DATA AND RESULTS FROM SECOND METHOD 

ho = 90.0' A0 = 0.0' 

Cab p o s i t i o n  1 

e = o.oo $ = o.oo cp = -10.00 

I D  h 

1 
2 

e = o.oo 

TD 

1 
2 

I D  

1 
2 

X 

Cor r e c t angl  e 

24'1 '22!l56 

Cab n o s i t i o n  2 

$ = 0.00 

h 

-2O1 ' 47'! 77 
io 8 21.62 

S t a r  coordinates  

10.0000 
io. 0001 

Y 

2.0000 
-2.0000 

A 

349O49 6'! 27 
1 3  30 57.49 

cp = lo.oo 

A 

Computed angle  

24'1 '22!'54 

347054 'lo'.'€% 
8 43 46.47 

Z 

1.0000 
2.5000 

Erro r  

o"02 
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Figure 1.- Basic geometry of the Midcourse Navigation and Guidance Simulator. 
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Figure 2.- Sights of the cross from a single position of the survey 
ins trwnent . 

Figure 3.- The instrument 
azimuth angles by 

coordinate system, showing the altitude and 
which the unit vector is described. 
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I nst. 

Figure 4.- Resolution of the x component of the instrument position 
into Xhoriz and xvert. 
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Figure 5.- Geometry of the horizontal survey. 

c 

Figure 6.- Sights of a star from two positions of the survey instrument. 

26 



Figure 7.- Setup from which test data were hand computed. 
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Figure  8.- Standard dev ia t ion  of t h e  e r r o r s  i n  t h e  computed angle  due 
t o  observa t ion  e r r o r s .  
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Figure  9.- Mean e r r o r  i n  t h e  computed angle  due t o  observa t ion  e r r o r s .  
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Figure 10. - Cab-position angles. 
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